Imputation through finite Gaussian mixture models
نویسندگان
چکیده
Imputation is a widely used method for handling missing data. It consists in the replacement of missing values with plausible ones. Parametric and nonparametric techniques are generally adopted for modelling incomplete data. Both of them have advantages and drawbacks. Parametric techniques are parsimonious but depend on the model assumed, while nonparametric techniques are more flexible but require a high amount of observations. The use of finite mixture of multivariate Gaussian distributions for handling missing data is proposed. Themain reason is that it allows to control the trade-off between parsimony and flexibility.An experimental comparison with the widely used imputation nearest neighbour donor is illustrated. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Gaussian Mixture Models for Time Series Modelling, Forecasting, and Interpolation
Gaussian mixture models provide an appealing tool for time series modelling. By embedding the time series to a higher-dimensional space, the density of the points can be estimated by a mixture model. The model can directly be used for short-to-medium term forecasting and missing value imputation. The modelling setup introduces some restrictions on the mixture model, which when appropriately tak...
متن کاملIntegration and imputation methods for unreliable feature compensation in GMM based speaker verification
This paper addresses the problem of text-independent speaker verification in the presence of unreliable (masked by noise) features. It presents and assesses several integration and imputation approaches used for unreliable feature compensation in the framework of Gaussian mixture models (GMMs) of speakers. These approaches include marginalisation, bounded integration, mean imputations, integrat...
متن کاملMissing data imputation through GTM as a mixture of t-distributions
The Generative Topographic Mapping (GTM) was originally conceived as a probabilistic alternative to the well-known, neural network-inspired, Self-Organizing Maps. The GTM can also be interpreted as a constrained mixture of distribution models. In recent years, much attention has been directed towards Student t-distributions as an alternative to Gaussians in mixture models due to their robustnes...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2007